nequip.model
NequIP Model
- nequip.model.NequIPGNNModel(**kwargs) GraphModel
NequIP GNN model that predicts energies and forces (and stresses if cell is provided).
- Parameters:
seed (int) – seed for reproducibility
model_dtype (str) –
float32
orfloat64
r_max (float) – cutoff radius
per_edge_type_cutoff (Dict) – one can optionally specify cutoffs for each edge type [must be smaller than
r_max
] (defaultNone
)type_names (Sequence[str]) – list of atom type names
num_layers (int) – number of interaction blocks, we find 3-5 to work best (default
4
)l_max (int) – the maximum rotation order for the network’s features,
1
is a good default,2
is more accurate but slower (default1
)parity (bool) – whether to include features with odd mirror parity – often turning parity off gives equally good results but faster networks, so it’s worth testing (default
True
)num_features (int) – multiplicity of the features, smaller is faster (default
32
)radial_mlp_depth (int) – number of radial layers, usually 1-3 works best, smaller is faster (default
2
)radial_mlp_width (int) – number of hidden neurons in radial function, smaller is faster (default
64
)num_bessels (int) – number of Bessel basis functions (default
8
)bessel_trainable (bool) – whether the Bessel roots are trainable (default
False
)polynomial_cutoff_p (int) – p-exponent used in polynomial cutoff function, smaller p corresponds to stronger decay with distance (default
6
)avg_num_neighbors (float) – used to normalize edge sums for better numerics (default
None
)per_type_energy_scales (float/List[float]) – per-atom energy scales, which could be derived from the force RMS of the data (default
None
)per_type_energy_shifts (float/List[float]) – per-atom energy shifts, which should generally be isolated atom reference energies or estimated from average pre-atom energies of the data (default
None
)per_type_energy_scales_trainable (bool) – whether the per-atom energy scales are trainable (default
False
)per_type_energy_shifts_trainable (bool) – whether the per-atom energy shifts are trainable (default
False
)pair_potential (torch.nn.Module) – additional pair potential term, e.g.
nequip.nn.pair_potential.ZBL
(defaultNone
)